Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 23(1): 41-51, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36017818

RESUMO

Dietary metabarcoding has vastly improved our ability to analyse the diets of animals, but it is hampered by a plethora of technical limitations including potentially reduced data output due to the disproportionate amplification of the DNA of the focal predator, here termed "the predator problem". We review the various methods commonly used to overcome this problem, from deeper sequencing to exclusion of predator DNA during PCR, and how they may interfere with increasingly common multipredator-taxon studies. We suggest that multiprimer approaches with an emphasis on achieving both depth and breadth of prey detections may overcome the issue to some extent, although multitaxon studies require further consideration, as highlighted by an empirical example. We also review several alternative methods for reducing the prevalence of predator DNA that are conceptually promising but require additional empirical examination. The predator problem is a key constraint on molecular dietary analyses but, through this synthesis, we hope to guide researchers in overcoming this in an effective and pragmatic way.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Primers do DNA/genética , Reação em Cadeia da Polimerase/métodos , DNA/análise , Dieta
2.
Mol Ecol ; 30(22): 5844-5857, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437745

RESUMO

Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.


Assuntos
Quirópteros , Agricultura Florestal , Animais , Biodiversidade , Quirópteros/genética , Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Clima Tropical
3.
Ecology ; 102(3): e03256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226629

RESUMO

Constructing ecological networks has become an indispensable approach in understanding how different taxa interact. However, the methods used to generate data in network research vary widely among studies, potentially limiting our ability to compare results meaningfully. In particular, methods of classifying nodes vary in their precision, likely altering the architecture of the network studied. For example, rather than being classified as Linnaean species, taxa are regularly assigned to morphospecies in observational studies, or to molecular operational taxonomic units (MOTUs) in molecular studies, with the latter defined based on an arbitrary threshold of sequence similarity. Although the use of MOTUs in ecological networks holds great potential, especially for allowing rapid construction of large data sets of interactions, it is unclear how the choice of clustering threshold can influence the conclusions obtained. To test the impact of taxonomic precision on network architecture, we obtained and analyzed 16 data sets of ecological interactions, inferred from metabarcoding and observations. Our comparisons of networks constructed under a range of sequence thresholds for assigning taxa demonstrate that even small changes in node resolution can cause wide variation in almost all key metric values. Moreover, relative values of commonly used metrics such as robustness were seen to fluctuate continuously with node resolution, thereby potentially causing error in conclusions drawn when comparing multiple networks. In observational networks, we found that changing node resolution could, in some cases, lead to substantial changes to measurements of network topology. Overall, our findings highlight the importance of classifying nodes to the greatest precision possible, and demonstrate the need for caution when comparing networks that differ with respect to node resolution, even where taxonomic groups and interaction types are similar. In such cases, we recommend that comparisons of networks should focus on relative differences rather than absolute values between the networks studied.


Assuntos
Classificação , Análise por Conglomerados , Simulação por Computador , Ecologia
4.
PLoS One ; 15(5): e0232601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392221

RESUMO

Morphological variation between individuals can increase niche segregation and decrease intraspecific competition when heterogeneous individuals explore their environment in different ways. Among bat species, wing shape correlates with flight maneuverability and habitat use, with species that possess broader wings typically foraging in more cluttered habitats. However, few studies have investigated the role of morphological variation in bats for niche partitioning at the individual level. To determine the relationship between wing shape and diet, we studied a population of the insectivorous bat species Pteronotus mesoamericanus in the dry forest of Costa Rica. Individual diet was resolved using DNA metabarcoding, and bat wing shape was assessed using geometric morphometric analysis. Inter-individual variation in wing shape showed a significant relationship with both dietary dissimilarity based on Bray-Curtis estimates, and nestedness derived from an ecological network. Individual bats with broader and more rounded wings were found to feed on a greater diversity of arthropods (less nested) in comparison to individuals with triangular and pointed wings (more nested). We conclude that individual variation in bat wing morphology can impact foraging efficiency leading to the observed overall patterns of diet specialization and differentiation within the population.


Assuntos
Quirópteros/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Quirópteros/fisiologia , Costa Rica , Ecossistema , Feminino , Voo Animal , Florestas , Masculino , Comportamento Predatório , Especificidade da Espécie , Asas de Animais/fisiologia
5.
Ecol Evol ; 8(15): 7599-7610, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151174

RESUMO

Variation in the diet of generalist insectivores can be affected by site-specific traits including weather, habitat, and season, as well as demographic traits such as reproductive status and age. We used molecular methods to compare diets of three distinct New Zealand populations of lesser short-tailed bats, Mystacina tuberculata. Summer diets were compared between a southern cold-temperate (Eglinton) and a northern population (Puroera). Winter diets were compared between Pureora and a subtropical offshore island population (Hauturu). This also permitted seasonal diet comparisons within the Pureora population. Lepidoptera and Diptera accounted for >80% of MOTUs identified from fecal matter at each site/season. The proportion of orders represented within prey and the Simpson diversity index, differed between sites and seasons within the Pureora population. For the Pureora population, the value of the Simpson diversity index was higher in summer than winter and was higher in Pureora compared to Eglinton. Summer Eglinton samples revealed that juvenile diets appeared to be more diverse than other demographic groups. Lactating females had the lowest dietary diversity during summer in Pureora. In Hauturu, we found a significant negative relationship between mean ambient temperature and prey richness. Our data suggest that M. tuberculata incorporate a narrower diversity of terrestrial insects than previously reported. This provides novel insights into foraging behavior and ecological interactions within different habitats. Our study is the first from the Southern Hemisphere to use molecular techniques to examine spatiotemporal variation in the diet of a generalist insectivore that inhabits a contiguous range with several habitat types and climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...